Neural engineering devices – Decoding the brain

Neural engineering devices – Decoding the brain

Neural engineering – involving the design of brain implants connected with external technology based on restoration and augmentation of human function via direct interactions between the nervous system and artificial devices – is a rapidly evolving field. Currently, intensive research is underway to study the coding and processing of information in the sensory and motor systems so that it can be manipulated through interactions with engineering devices, including brain-computer interface (BCI) applications and neuroprosthetics. Neural engineering devices are deployed for specific applications such as the post-injury regeneration of peripheral nerve, spinal cord tissue, and retinal tissue. For developing these devices, neural engineers need to have in-depth knowledge of how the nervous system functions and malfunctions. They decode chemical, electrical, magnetic, and optical signals responsible for extracellular field potentials and synaptic transmission in neural tissue. Signal processing techniques and computational modelling are used to understand the properties of neural system activity. To process these signals, the voltages across neural membranes are translated into corresponding code, a process known as neural coding. This involves analysis of the movement and sensory phenomena by understanding how the brain encodes simple commands in the form of central pattern generators (CPGs), movement vectors, the cerebellar internal model, and somatotopic maps. Correcting anomalies in central nervous system Neuroscience and engineering have come together to investigate the peripheral and central nervous system function and find clinical solutions to problems created by brain damage or malfunction. Recent years have seen tremendous advancement in biomedical technologies that can enhance or suppress the activity of the nervous system with the delivery of pharmaceutical agents, electrical signals, or other kinds of an energy stimulus to re-establish balance in the brain’s impaired regions. Advancements in technology have resulted in delivering and analysing these signals with increased sensitivity, biocompatibility, and viability in closed […]

Spread the love

Leave a Reply

Nature Knows and Psionic Success